Using the CTAG Rubrics for Digital Electronics

Presented by Randy Storms Assistant Professor North Central State College

CTEET002 – Digital Electronics 4 Semester

- No Prerequisites
- 4 semester hours
 - 5 contact hours per week for 15 weeks 3 Lecture/2 lab
 - 75 hours "in seat" time per semester
 - OBR requires 2 hours work outside of class per credit hour minimum.
 - Minimum of 8 hours homework.
 - Weekly time required of students is a minimum of 13 hours.

Digital "Outcomes" - *Required – Must Be Taught

- •Number systems, operations and codes*
- Logic gates*
- •Boolean Algebra *
- •DeMorgan's theorem and logic simplification*
- Combinational logic circuits*
- Encoders/decoders*
- •Multiplexers/demultiplexers*
- •Adders, subtractors, ALUs*
- •Flip-flops and related devices*
- •Counters*
- •Shift registers*
- •Memory and storage*
- Integrated circuit technologies*

Submitted course work must include proof of laboratory component

- Students will not fully grasp the subject matter until they must physically transfer the schematic to the circuit board.
- Multi-SIM and other simulators are great additional learning tools, but do not replaces "hands on" circuit wiring.
- It takes time to develop the skills of successfully transferring the abstract "symbology" to a protoboard or circuit board.
- Besides, it is a required CTAG component.

What I have learned of the TAG/CTAG process

- Make sure your syllabus outcomes and material line up with the outcomes of the listed CTAG.
- Borrow from the rubrics on the CEMS descriptions.
- Be clear on the number of hours spent on each outcome.
- Be clear on the homework assignments, i.e., what problems from what chapter.
- Be clear on the labs.
- You WANT approval on the first submission.

Outcome 1 Number systems, operations, and codes.*

Applied skills strongly	Some applied skills	Little applied skills	No applied skills
demonstrated	present	present	Present
 Contrast binary versus Gray code potential error generation. Choose error detection codes for an application. 	 Perform addition and subtraction operations in binary and hexadecimal. Convert fractional binary numbers. 	 Convert between binary, decimal and hexadecimal by hand. Convert between decimal and BCD by hand. 	 Define Binary, Decimal and Hexadecimal. Describe BCD, Gray code, and ASCII.

- Your students must be able to:
 - count to 16₁₀ for purposes of building truth tables.
 - convert 4-bit binary numbers to decimal, Hexadecimal and BCD by memory.
 - convert single digit Decimal, Hexadecimal and BCD to a 4-bit binary value by memory.
 - an 8-bit binary number to decimal, and Hexadecimal by hand and visa versa.
- Students MUST understand how to convert using successive division.
- Encourage the use of Engineering calculator apps for a smartphone and using the calculator provided with Windows.

Outcome 2 Logic Gates

Applied skills strongly	Some applied skills	Little applied skills	No applied skills
demonstrated	present	present	Present
 Construct and analyze logic gates with more than 2 inputs. Measure voltages and logic levels (high, low, invalid) at inputs and outputs and compare to data sheets. 	 Verify the physical functionality of the 7 common logic gates in a laboratory setting. Contrast ideal electrical behavior versus real world measurements based on data sheets. Construct and analyze timing diagrams. 	 Construct truth tables for the 7 common logic gates. Identify pin numbers and pinouts of logic gate ICs. Interpret data sheets. 	 Identify truth tables and the operation symbols for the 7 common logic gates.

- It is important that students learn how to properly use a digital logic probe.
 - Students will typically assume that 0 volts, ground, and no connection amount to the same thing.
 - A voltmeter cannot distinguish between a ground and no connection.
 - A voltmeter does no easily show you if there is a signal pulse on an I/O.
- It is important that students trace problems with test instruments and not just recheck/redo wiring.

<mark>_</mark> X	τ	0	0	0
Х	0	1	1	1
В	0	1	0	1
A	0	0	1	1

×	1	1	1	0	
×	0	0	0	1	
В	0	1	0	1	
A	0	0	1	1	

Outcome 3 Boolean Algebra

Applied skills strongly	Some applied skills	Little applied skills	No applied skills
demonstrated	present	present	Present
 Prove 12 basic rules of Boolean algebra Use 12 basic rules of Boolean algebra Develop Boolean Algebra equations for combinational logic circuits. Develop SOP and POS Boolean Algebra equations from Truth Tables. 	 Apply Boolean addition and multiplication Relate Boolean operations to appropriate logic gates Construct a Truth Table output for a combinational circuit using Boolean Algebra. 	 Evaluate sum and product terms Describe commutative, associate and distribute laws Apply & compute Boolean Algebra operators to the 7 common logic gates. 	 Define variable and literal Identify Boolean addition and multiplication Identify & explain Boolean Algebra operators.

- I take several weeks mix with other objectives to teach Boolean, DeMorgan, SOP, and POS.
- Homework problems, homework problems, homework problems.
- Verify the Boolean Algebra laws in MultiSim.
- How many gates required to implement X=(A+B)C
- What Law? B + (F + G) = F + (B + G)
- Develop equations

Outcome #4

DeMorgan's Theorem & Logic Simplification

- Outcomes 3 and 4 require the Memorization and Application of:
 - 3 Laws
 - 12 Rules
 - DeMorgan's Theorem
 - Maurice Karnaugh's map
- I spread all this out over the first 7-8 weeks of the semester.
- Students not only need time for homework exercises but for the memory "writes" to take hold.
- Considering that most are either taking remedial math or college level algebra...

Applied skills st demonstrat	rongly ed	Some applied skills present	Ι	Little applied skills present	No applied skills Present
Simplify a logic expression by	.9	Develop a truth table and K map from a	•	Explain the equivalency between	 Describe DeMorgan's theorem
applying Book algebra and DeMorgan's th	ean leorem	 Boolean expression Compare the circuits to match both sides of 		NAND and Negative- OR gate and NOR and Negative-AND	 Derive logic expression for a given logic circuit
Simplify a logic expression by	.c.	the 12 basic laws of simplification.		gate using DeMorgan's theorem	 Define DeMorgan's theorem for NAND
 applying K ma Simplify Book 	p.	 Deduce how to group 1's in a SOP K-maps. 	•	Evaluate a sum-of- products (SOP)	 and NOR gates. Identify the 12 basic
using the 12 b	asic fication	 Deduce now to group 0's in a POS K-maps. 	•	Apply DeMorgan's theorem to	 Draw & label 2.3.4, & 5 variable K-maps.
& DeMorgan's theorem.	is to		•	combinational logic circuits. Show how to place	•
SOP equations K-maps.	from		•	1's in a SOP K-map. Show how to place	
Predict simplif POS equations	ied from			0's in a POS K-map.	
 K-maps. Prove simplifice equations matcons matcons matcons in the original equation 	be th ons.				

1) Students have a very difficult time with understanding the DeMorgan's Law. It is a 3 step process:

- (a) Invert the literals
- (b) Change the operator (AND OR)
- (c) Invert the function Thus, $X'Y \rightarrow (XY') \rightarrow (X+Y') \rightarrow (X+Y')'$

2) Also, no textbook presents a very good stepwise approach to Boolean reduction. They just present the laws and let the students loose. But, here is a better way!!!

Excerpt from Ralph D. Whaley, Jr., Ph.D.'s presentation in 2014 Cincinnati State Technical and Community College

```
(1) Convert with DeMorgan's if needed
   (A + B)' = A'B'; (AB)' = A' + B'
(2) Expand terms
   C(A+B) = CA + CB
(3) Simplify "simple" terms
   AA'BC = 0; ABC'C' = ABC'
   A + AB = A; 1 + X = 1
(4) Group terms and reduce
   AB'C + AB' = AB'(C+1) = AB'
(5) Look for any terms with A + A'B "2nd law"
   ABC + B'C = C(B' + BA) = C(B'+B)(B'+A) = C(B'+A)
(6) Possibly consider adding "1"
   AB = AB(C+C') = ABC + ABC'
```

Excerpt from Ralph D. Whaley, Jr., Ph.D.'s presentation in 2014 Cincinnati State Technical and Community College

Outcome 5 Combinational Logic Circuits

A	Applied skills strongly demonstrated	Some applied skills present		Little applied skills present		No applied skills Present
•	Design and build a simplified combinational circuit from a Boolean output expression Troubleshoot a combinational circuit with appropriate tools Construct & evaluate a Combinational circuit from a schematic.	 Derive a logic circuit from a given truth table or a K map 	•	Produce a Truth Table for a Combinational circuit. Construct a K map from a truth table or logic circuit Write the Boolean output expression for a combinational circuit	•	Identify various logic gates in a combinational circuit Define combinational logic circuits List all input combinations for a circuit. Draw schematics with correct symbols with ECAD.
•	Construct & evaluate a Combinational circuit from a written logic scenario.					

Design a circuit such that a hall light may be controlled by 2 different switches.

- Develop the equation.
- Develop the truth table
- Design the circuit.
- Build the circuit.
- Test against the truth table.

Outcome 6 Encoders and Decoders

A	pplied skills strongly demonstrated		Some applied skills present		Little applied skills present		No applied skills Present
•	Build and troubleshoot a 74LS47 7-segment display circuit	•	Analyze how to cascade encoders and decoders. Develop truth table	•	Explain the number of input and output bits for a decoder and encoder	•	Define encoder and decoder Describe the function of binary-to-decimal
•	Design a logic circuit to decode or encode		based on the function of decoders and encoders	•	Identify the gates needed for a simple encoder and decoder.		decoder and decimal- to-BCD encoder

- Demonstrate how a single line in can select between 2 lines out.
- Decoders take an n-digit binary number and decodes it into 2ⁿ data lines.

Outcome 7 Multiplexers and Demultiplexers

Applied skills strongly	Some applied skills	Little applied skills	No applied skills
demonstrated	present	present	Present
 Wire and troubleshoot multiplexers/demultip lexers circuits Design a multiplexer to satisfy a logic scenario. Design a demultiplexer to satisfy a logic scenario. 	 Expand multiplexers/demultip lexers to handle more data lines Simplify the output expression of multiplexers/demultip lexers Analyze how to use a multiplexer as a function generator. 	 Develop truth table based on the operation of multiplexers/demultiplexers Describe 74HC157 multiplexer and 74HC154 demultiplexer Draw the logic diagram of multiplexers/demultiplexers Explain the uses of a multiplexer & a demultiplexer. 	

 Although it used to make more of a connection with students when we still had analog tv's with a channel selector I still use rotary switches to demonstrate multiplexing and demultiplexing.

- Stress the use of the n line to 2ⁿ line decoder used in the demux.
- And the use of 2ⁿ to n encoder used in the mux.

http://en.wikipedia.org/wiki/Multiplexer#/media/File:Telephony_mul tiplexer_system.gif

Outcome 8 - Adders, Subtractors, ALUs

Applied skills strongly	Some applied skills	Little applied skills	No applied skills
demonstrated	present	present	Present
 Design and build adder and other ALU circuits with proper logic gates. Troubleshoot the ALU circuits with proper tools. 	 Draw logic diagrams of half-adder, full-adder and other ALUs Expand adders to multiple bits. Analyze & apply commercial adders. 	 Develop the truth tables of half- adder, full- adder and other ALUs Simplify the output expression of half- adder, full-adder and other ALUs Apply adders to solve multi-bit addition. Explain two's compliment use for negative numbers. Apply two's compliment to convert negative binary numbers. Explain carry/borrow inputs and outputs. 	 Describe the function of a half-adder and full- adder Describe the function of other ALUs Explain how adders can be used to subtract.

- Analyze the simple gate logic of 2 bit half and full adders.
- Beyond that we use the functional block diagrams.
- It is important that students understand how negative binary numbers are treated.
- Students should be able to cascade half-bit and full-bit adders

Outcome 9 Flip-Flops and Related Devices

- Done with Combinational logic
- Start with Sequential logic
- Outputs only change state with a clock or other enable/disable signals
- Timing diagrams are a MUST!
- Flip-flops are latches are memory.
- Registers, groups of FFs are the basis of computer memory.

Ψ	oplied skills strongly demonstrated	Some applied skills present		Little applied skills present	No applied skills Present
•	Wire flip-flops with understanding of "preset", "clear" and	 Identify and draw logic diagrams of various flip-flops 	•	Explain clock pulses and edge-triggered flip-flops	 Describe structure, operation and application of various
•	"clock" Discuss the operating characteristics such as	 Recognize the difference among S- R, D and J-K flip- 	•	Explain the function of pulse transition detector	 types of latches Distinguish between latches and flip-flops
· · · · F	propagation delay, hold time and set-up time.	flopsExplain the difference between	•	Distinguish between a positive and negative edge- triggered flip-	 Identify latches & F- F's by their schematic symbols.
•	Interpret the applications such as timers	combinational and sequential circuitsAnalyze & Compare	•	flops Draw Truth tables for latches & F-F's.	 Explain latch & F-F operations.
•	Construct timing diagrams for latches and F-F's.	asynchronous preset & clear operations.	•	Produce Timing Diagrams for latches & F-F's.	
• •	Design & construct latches & F-F's for various applications. Design power on reset (POR) circuitry for latches & F-F's.				

Outcome 10 - Counters

Applied skills strongly	Some applied skills	Little applied skills	No applied skills
demonstrated	present	present	Present
 Determine and modify the modulus of a counter Identify and wire various types of counters such as up/down counters Design a counter with specified sequence states Construct timing diagrams for std. & truncated counters. 	 Analyze the operation of decade asynchronous counters Analyze the operation of synchronous counters Analyze the difference between asynchronous and synchronous counters 	 Construct truth table for a sequential logic circuit Analyze counter timing diagrams Explain & apply synchronous & asynchronous cascading. 	

- Waveform analysis of counters are absolutely necessary.
- Spend time on the data sheets!
- Understand the Clock inputs and which edge triggers the count.
- A great time to discuss and observe propagation delay.

Outcome 11 Shift Registers

Applied skills strongly	Some applied skills	Little applied skills	No applied skills
demonstrated	present	present	Present
 Interpret applications of shift registers such as counters, time delay and data converter Wire and troubleshoot shift register Construct timing diagrams for various shift registers. Design & construct shift registers for various applications. 	 Analyze the operation of other shift registers such as bi-directional. Draw the wave forms of the output of shift registers 	 Describe the structure and operation of serial in/serial out, serial in/parallel out, parallel in/serial out and parallel in/parallel out shift register Identify & explain Johnson & Ring counters and their use. 	 Explain how a flip- flop stores and transfer data Identify logic symbols of various shift registers Identify basic forms of data movement in shift registers\ Explain event counting & timing.

Outcome 12 Memory and Storage

Applied skills strongly	Some applied skills	Little applied skills	No applied skills
demonstrated	present	present	Present
 Describe the unique structure and performance of flash memory Design & construct circuitry for memory expansion. Design & construct memory circuits for various applications. 	 Explain what RAMs are made of and how they work Explain what ROMs are made of and how they work Compare the RAM and ROM for their advantages and disadvantages. Analyze techniques for memory expansion. 	 Describe the function of three types of buses such as address, data and control Describe the basic read and write operation Identify & explain RAM & ROM inputs and outputs. Compute address size and organization of memory from inputs & outputs. 	 Describe the basic organization of a memory Explain the capacity and address of a memory Identify & explain RAM & ROM inputs and outputs. Compute address size and organization of memory from inputs & outputs.

- If there is time.
- This outcome belongs in the first microprocessor class, not digital.
- The hierarchy of gates to latches to FFs to registers should be emphasized.

Outcome 13 Integrated Circuit Technologies

Applied skills strongly	Some applied skills	Little applied skills	No applied skills
demonstrated	present	present	Present
 Compare CMOS and TTL in term of their performance Build and measure a few logic gates with transistors 	 Interpret the operation of various logic gates such as inverters, NAND and NOR gates implemented by MOSFETs Interpret the operation of various logic gates such as inverters, NAND and NOR gates implemented by BJTs Compare performance parameters of logic families. 	 Read and obtain information from the data sheet of IC devices Explain the basic operation of MOSFETs and BJTs Identify MOSFETs and BJTs by their symbols 	 Discuss basic IC characteristics such as logic levels, noise margin and fan-out Explain how propagation delay affects the circuit speed List various logic families. Identify various packaging styles. Define complexity SSI through ULSI (Gates through microprocessors).

- Considering that digital is a no-prereq course, most students will have no semiconductor background knowledge.
- TTL voltage levels, fan-outs, package types, CMOS handling, reading data sheets, etc, should be covered.

The Wrap-up

- Digital is hard for many students
 - The student needs to spend a minimum of 8 hours, per week on reading assignments, solving problems and review.
 - 13 outcomes are to many for mastery in one 4 credit hour course.
 - The difficulty is compounded by a lack of prerequisites.
- The purpose of TAGs and CTAGS are to help insure student success in later courses.
- The purpose of the rubrics are to help guide you, the teacher, with *measurable objectives*.